Search results for "protein aggregate"
showing 10 items of 29 documents
Introduction
2009
Metal ions modulate thermal aggregation of betalactoglobulin: a join chemical and physical characterization
2014
Abstract Molecular basis of the role played by Cu 2 + and Zn 2 + ions during the thermal aggregation processes of beta-lactoglobulin (BLG) was studied by using a joint application of different techniques. In particular, Raman spectroscopy was very useful in identifying the different effects caused by the two metals at molecular level (i.e. changes in His protonation state, disulfides bridge conformation, and micro-environment of aromatic residues), evidencing the primary importance of the protein charge distribution during the aggregation process. Both metal ions are able to act on this factor and favor the protein aggregation, but Zn 2 + is able to alter the natural conformational state of…
Protein aggregates for water purification
Water pollution is the contamination of water bodies including lakes, rivers, oceans and it is a leading global risk factor for illness and death for people, plants and living organisms. A principal source of water pollution is industry, from which increasing amounts of toxic pollutants are released including heavy metals such as cobalt, lead and copper. Today various technologies for purifying contaminated water can be applied, a lot of them being typically expensive, ion specific and characterised by low efficiency. For these reason, the search of new biocompatible materials with increased capabilities is strongly needed.Protein aggregates have already revealed their potential as environm…
Phasor FLIM analysis of Thioflavin T fluorescence in protein amyloid aggregates: Mapping molecular interactions.
Thioflavin T (ThT) is a worldwide used dye to monitor protein aggregation as it stains with a certain specificity amyloid structures. The interactions between ThT and its hosts are largely studied suggesting that fluorescence properties of this dye critically depend both on the environment rigidity, electrostatic and hydrophobic properties as well as on molecular details binding site structure. Here FLIM and phasor approach analysis are used to exploit ThT amyloid interactions and, in turn, to address polymorphism and structural heterogeneity of amyloid species mapping aggregate-to-aggregate structural differences and revealing details of molecular architecture within the same aggregate.
Histopathology of Skeletal Muscle in a Distal Motor Neuropathy Associated with a Mutant CCT5 Subunit: Clues for Future Developments to Improve Differ…
2023
Genetic chaperonopathies are rare but, because of misdiagnosis, there are probably more cases than those that are recorded in the literature and databases. This occurs because practitioners are generally unaware of the existence and/or the symptoms and signs of chaperonopathies. It is necessary to educate the medical community about these diseases and, with research, to unveil their mechanisms. The structure and functions of various chaperones in vitro have been studied, but information on the impact of mutant chaperones in humans, in vivo, is scarce. Here, we present a succinct review of the most salient abnormalities of skeletal muscle, based on our earlier report of a patient who carried…
Sigma-1 Receptor Activation Induces Autophagy and Increases Proteostasis Capacity In Vitro and In Vivo
2019
Dysfunction of autophagy and disturbed protein homeostasis are linked to the pathogenesis of human neurodegenerative diseases and the modulation of autophagy as the protein clearance process has become one key pharmacological target. Due to the role of sigma-1 receptors (Sig-1R) in learning and memory, and the described pleiotropic neuroprotective effects in various experimental paradigms, Sig-1R activation is recognized as one potential approach for prevention and therapy of neurodegeneration and, interestingly, in amyotrophic lateral sclerosis associated with mutated Sig-1R, autophagy is disturbed. Here we analyzed the effects of tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine hyd…
Thioflavin T templates amyloid β(1–40) conformation and aggregation pathway
2015
Aβ(1-40) peptide supramolecular assembly and fibril formation processes are widely recognized to have direct implications in the progression of Alzheimer's disease. The molecular basis of this biological process is still unknown and there is a strong need of developing effective strategies to control the occurring events. To this purpose the exploitation of small molecules interacting with Aβ aggregation represents one of the possible routes. Moreover, the use specific labeling has represented so far one of the most common and effective methods to investigate such a process. This possibility in turn rests on the reliability of the probe/labels involved. Here we present evidences of the effe…
Plasmin-Induced Activation of Human Platelets Is Modulated by Thrombospondin-1, Bona Fide Misfolded Proteins and Thiol Isomerases
2020
Inflammatory processes are triggered by the fibrinolytic enzyme plasmin. Tissue-type plasminogen activator, which cleaves plasminogen to plasmin, can be activated by the cross-&beta
Tolerance, Adaptation, and Cell Response Elicited by Micromonospora sp. Facing Tellurite Toxicity: A Biological and Physical-Chemical Characterization
2022
The intense use of tellurium (Te) in industrial applications, along with the improper disposal of Te-derivatives, is causing their accumulation in the environment, where oxyanion tellurite (TeO32−) is the most soluble, bioavailable, and toxic Te-species. On the other hand, tellurium is a rare metalloid element whose natural supply will end shortly with possible economic and technological effects. Thus, Te-containing waste represents the source from which Te should be recycled and recovered. Among the explored strategies, the microbial TeO32− biotransformation into less toxic Te-species is the most appropriate concerning the circular economy. Actinomycetes are ideal candidates in…
Extracellular Membrane Vesicles as Vehicles for Brain Cell-to-Cell Interactions in Physiological as well as Pathological Conditions.
2015
Extracellular vesicles are involved in a great variety of physiological events occurring in the nervous system, such as cross talk among neurons and glial cells in synapse development and function, integrated neuronal plasticity, neuronal-glial metabolic exchanges, and synthesis and dynamic renewal of myelin. Many of these EV-mediated processes depend on the exchange of proteins, mRNAs, and noncoding RNAs, including miRNAs, which occurs among glial and neuronal cells. In addition, production and exchange of EVs can be modified under pathological conditions, such as brain cancer and neurodegeneration. Like other cancer cells, brain tumours can use EVs to secrete factors, which allow escaping…